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In the past several years, there has been s~bstantia1 development of various upstream-centered 
schemes for solving numerically the equations dr inviseid compressible flow. A large subclass of 
these schemes reJy on the existence of efficient ~Jgorithms for solving the Riemann problem. Such 
algorithms exist for fluids with a polytropic or isothermal equation of state, with the possible inclu­
sion of simplified models for chemical reactions. In the follO\\ing. we give a procedure for c0n­

structing solutions to the Riemann problem for fluids with a general convex equation of state. In the 
Case w~ere the Riemann problem is to be used to calculate fluxes for a conservative finite difference 
scheme,. we approximate this exact Riemann solver by introducing a local parameterization of the 
equation of state. treating the parameters which describe the equation of state as separate dependent 
variables. This enables us to reduce the number of calJs of the equation of state to one per zone per 
sweep and yields a set of algorithms for which the increase in the cost of performing a real gas cal· 
culation over that of the corresponding polytropic gas scheme, other than the single equation of state 
call per zone. is only a few percent Furthermore, the real gas algorithms retain the resolution of 
the polytropic gas algorithms. 

We consider the inviscid compressible flow C;qu2tions in one space variable in conservation 
form 

au + aF (U) .. 0 
iJt ax 

F (U )... [pu !u+ P J. 
puE + up 

(1) 

Here p is the density, &I the velocity, and E the total enfrgy per unit mass. E is the sum of 

the internal energy e , and the kinetic energy: E -= t + 112 • The pressure p is derived from 

th . .. . f () 1 ... esc quantIties VIa an equatton 0 state: p .. p T ,t ,T - -. 
p 

We also ne~d the e~uations (1). expressed in nonconsen'ation form: 

av + A BV - 0 
iJt ax 

y - [; ] A (V ) - G ;'1 : 1 
The adiabatic speed of sound is' expressed in terms of p as C 2 == pp, - p .,., c· = T'C. In 

the fol1ov.;ng. we will assume C 2 > 0 and that the equation of state is convex. i.e., 
pC, - C.,. > O. The matrix A (V ) has left and right eigenvectors (I. (V ),T _ (V». 
I. ".' == D •• ' ,# -= 0,+,-, associated \\;th the eigen\'alues A+ == 11 + C • ~ == 11 • 
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Weapons Center lndependen: Research Fund. 
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The Riemann Problem 

The Riemann problem is the initial value problem for (1) for which the initial data consists of 
two constant states separated by a single jump discontinuity. 

'{ULI ' x < ° 
U (x ,0)== 

U~ x > ° 
We look for non-entropy-decreasing solutions which depend on (x ,I ) only in the similarity 

variable ~ -= c. Such solutions consist of four constant states separated by three waves (figure 1). 
- t . 

each· of which associated with onc of. the characteristi'c speeds. The o..v,-ave is a jump discontinuity 
in'the density, across which the pressure and velocity are continuous, and which propagatC$ at a 
velocity II • . The ± waves arc shock discontinuities, or centered rarefaction waves, depending on 
the sign of the pressure jump: 

p. > Ps p. <Ps 

d '1 Cl -- --dp 

du 
C - =:: ::: 

dp 
• (p • -Ps ) 

( '1 S -., S ) + 1 - 0 
Ws 

:s.p <p 
. 

Ps Ws (u· -us) cc ±(p. -Ps ) 
u ± c ==~ 

(S ,:::) lie (L ,-),(R .+) 0 

For either a shock or a rarefaction wave, the post-wave state is uniquc1y detcnnined by "the 
pre-wave state and p • . In particular. we can define us·. the post-wave velocity. 2.S a function of 
p. and Us . The condition that the left and right waves match up to give a solution to the 
.Riemann problem is that UL· - UR· = u·o \Ve can also define the mean Lagrangian wave speeds 

• 
H' = P -Ps * Us s u 

U -us 
c:; Cs 11 = Us 

(2) 

In the case of a shock.. Ws is the quantity which appears in the shock jump relations (2). In 
either case, Ws is uniquely determined by Vs and p a • 

'WOe obtain a solution to the Riemann problem bv a double iteration scheme: we alternate 
between iterating to obtain values for WL • WR , gi\'e~· P • • and iterating on p a so that UL

a 
== UR-' 

If P ·.1 is the value of p a at the I ·th iteration, then p • ,I ..... 1 is given by 

u'i == Us (p • ,I .us ) 



• I Us • ... Us 
p. J -Ps 

± -----wi 

l 
This is a secant iteration c:orrespon~ing to the Ne\\10n iteration in [4]. The first two guesses used to 
start the iteration are obtained using Godunov's iteration scheme. The calculation of tv, is per­
formed by an iterative scheme to solve the shock jump equations if p. > p, and by solving the 

ODE's using finite differences if p. < p, . The calculation of the solution as a function of (.!.) 
t 

is an immediate generalization of the procedure used in the polytropic case except when ( ~) is 
inside a rarefaction fan. In that casc, one applies inverse interpolation to the solution of the ODE's 
which define the solution insidc the rarefaction fan as a function of the pressure. 

LoeaJ Parameterization of tbe Equation of State 

We parameterize the equation of state in terms of a function -,(p.e ), defined to be 

"y _. p (1',t) + 1 . 
pte 

In the case of smooth flow, the behavior of "Y as a function of the solution is most naturally 
specified along the streamline: 

d "Y - [1 - t ] b - I)! dp along dr - Udl. (3) 

2 
Here r is derived from the sound speed to be r(p,t ) -= .~. 

p 
In the case of discontinuities across which the RankineaHugoniot conditions "hold, it is not pos­

Stole in general to specify how "Y behaves as a function of the change in the state variables without 
solving the equations (2). However, if the jump is not too large. tben the jump relations for "Yare 
well-approximated by an integrated form of the characteristic equations (3): 

"Ys· - "Ys - [1 - f ]<;. - 1) ;. (p. - Ps ) + 0 (p. - Ps )3 ( 4) 

where; i: and p'" are some suitably centered \'alues for those variables. 

In order to apply this model in a specific case, we will describe how to extend the single-step 
Eulerian scheme given by Colella and \\'oodward (21 for a p:>lytropic gas. to the general equation of 
state case. In outline, this sche!'Tle consists of four steps: 

1) the interpolation of values for the dependent variables (not necessarily the conserved quanti­
ties); 

2) the construction of effective left and right states V j .~_L ,ji j "'~.R at x j +~; 
3) the solullon of the R.1emann problem at x j .,.~ with left and right states constructed as in 2). 

to give V j _;-,: 



4) the conservative differencing of the fluxes F J +~ - F (U (V J +.J). 

U ,. ... 1 - U,. At (F - F ) J .. J 1l.x J +K J -~ • 

The states Y J +~L • V J +~R are constructed such that ji J +~ is. in smooth regions. an 

approximation to a solution to the characteristic fonn of the equations at (x J +¥ltt" + ~) up to 

terms of second order, so that the scheme is second order accurate in space and time. It is princi­
pally in steps 2) and 3) where the modifications are made to accommodate the general equation of 
state. 

In the first step9 we interpolate the variables q - q (U j) q - P .P.rJ .'Y using a moncton­
ized interpolation scheme. We do not interpolate r but treat it as piea:wise constanL 

The second step is performed in two p2l1S. First. we calculate ji J +~L ,.( Y J +~ ). a first 
guess for the effective left (right) state, by calculating the average of U to the left (right) between 
the zone edge and the + (-) characteristic (figure 2). In the case where the flow is supersonic, so 
that there is no characteristic reachin.!.! J +~ from one side. we use the appropriate limiting value at 
x j +~ We then make corrections to V J +v-..s using the characteristic projection operators (figure 
3) for example. for the left state 

ji J +U - ji J +~L ~ . -P (Y J +V-J. 

1.. (U j)>O 

p. v - (I. (V J +u )·v ) '. (V J +~ .. L ) # -= +.-.0 

[
1- r'Y

J

1 J(~J - 1) (ji/+u P/+v..L) 
Y.z(p J +~ + P / +V-... L ) 

.. .., J .... ~_L otherwise. 

if &I j > 0 

We calculate YJ +~R similarly. replacing L by R and).. (Vj)>O by>... (Uj +1 )<0. 

In step 3) we solve the Riemann problem v.;th the secant method (or the general Riemann 
solver described a~ve. usir,g the mode] equation (4) to provide a non-iterative! method {or obtaining 
Ws 2. Given p • ,V J +~ ,1' J +~J I we calculate -rs· to be . 

• + (1 - :J.)(; - 1) _P __ -_P--..:.,...j _+_\'J __ 

r Y.z(p. + P j +~J) • 

; - Y.z{,. j + 'Y j +1) 

r ... m{r j + r j +1) . 

Given "]'/. it is easy to solve (2) to obtain Ws 2: 

(p. - P j +U }(P. + 'h( -rs· - 1)(P· ..:.. P j +~_s ») 
Ws 1 == -----..;.......:~----__:::------=----~-~-

• _ (-rs· - 1) 
P ., j +~ .. S P j +¥J T j +~..s (=r j +\' .. s - 1) 

The e",aluation of the Riemann problem at x J +1-: proceeds .as b:fore. except that we use linear inter­
polation between the pre- and post-wave stales to evaluate the solu~ion inside a rarefaction fan. 

!'umerical Results 



We have implemented the method described above, and tested it for a variety of equations of 
state. In figure 4, we show the results of a Cartesian shock tube C2Jculation. In these results. and the 
figures that follo\\\ all quantities arc displayed in cgs units. The dotted line is the computed solu­
tion. and the solid line the exact solution, which was obtained using the exact Riemann solver 
described above. There are 180 zones in the computational domain, \\ith the initial discontinuity 
located between zones 60 and 61. 

The material on the left of the initial discontinuity is the product of a completely burned 
explosive; the material on right is air. initially at atmospheric conditions. The boundary between the 
two materials is tracked by solving an additional advection equation for the fraction of air in a zone. 
If the fraction is not 0 or 1, we take "Y J .r J in a tone to be a weighted average of those quantities 
for each of the two materials. 

The computed solution is in good agreement with the exact solution. The slight undershoot in 
the internal energy to the left of the contact is 2. starting error. which occupies a fixed number of 
zones as the mesh is refined. The apparent overshoot in "Y comes from evaluating the equation of 
state for ~e unphysical values of density and energy inside the sbock. However, the density. 
energy.' and pressure profiles are all monotone aa-ass the shock.. 

In figure 5" we show the results of the same sbock tube but in spherical coordinates \\ith the 
initial jump located at 3.78 an. In this case, we see in the solution a shock and a contact discon­
tinuity from tbe initial jump. as well as a second backward-facing shock which forms due to the 
effect of the geometry. Since this problem lacks an exact solution, we compue solutions obtained 
using 800 mesh points (solid line) and 400 mesh points (dotted lin:). The pressure is converged in 
the 400 zone results. but the density is not. This is not surprising, since we have only a tenth of the 
zones between the primary and secondary shocks to resolve the strongly varying density profile. Cal· 
culations performed previously with a constant -r EOS indicate that density profiles converge between 
800 and 1600 zones. 

Finally, we present in figure 6 a two--dimensional Cartesian calculation of a shock in N 2 

refiecting off an oblique surface. The Mach number, shock angle. and ambient state were chosen to 
coincide with a shock tube experiment performed by Ben-Dor and Glass ([1], case g). We obtain 
the correct shock reflection pattern. that of a double Mach reflection. The wall densities are in good 
agreement with the experiment. except in the region just behind the shock. In the latter case, the 
experimental data did not resolve the detailed structure. More highly resolved experiments (Glass 
[3]) confirm that, at least qualitatively, the behavior seen in tbe present calculations is correct. 

[11 . Ben-Dor. G. and Glass. I.!., J. Fluid Mech. 92 (1979), p. 459. 

[2J Colella, P. and Woodward, P.R., H"fhe Piecewise·Parabolic Method for Gas Dynamical Simula­
tions*, in preparation. 

[3) Glass, 1.1., *Beyond Three Decades of Continuous Research at L TIAS on Shock Tubes and 
Waves", tJTlAS Review, No. 45. july 1981. 

[4J van Leer. B .• J. Comp. Phys. 32.(1979), p. 101. 
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